27-28 August 2018

Salto Grande Hydroelectric Complex Argentina • Uruguay

HPP MODERNIZATION PROJECT

Organiser

Supported by

In partnership with

Diha International hydropower association

AGENDA

- 1. ITAIPU BINACIONAL
- 2. HPP MODERNIZATION PROJECT
 - ✓ HISTORICAL
 - ✓ MOTIVATION
 - ✓ SCOPE / OUT OF SCOPE
 - ✓ STRATEGIC PLANNING
 - ✓ BASIC DESIGN
 - ✓ EXECUTION PLANNING
- 3. DIGITAL ARCHITECTURE
- 4. FINAL CONSIDERATIONS

27-28 August 2018

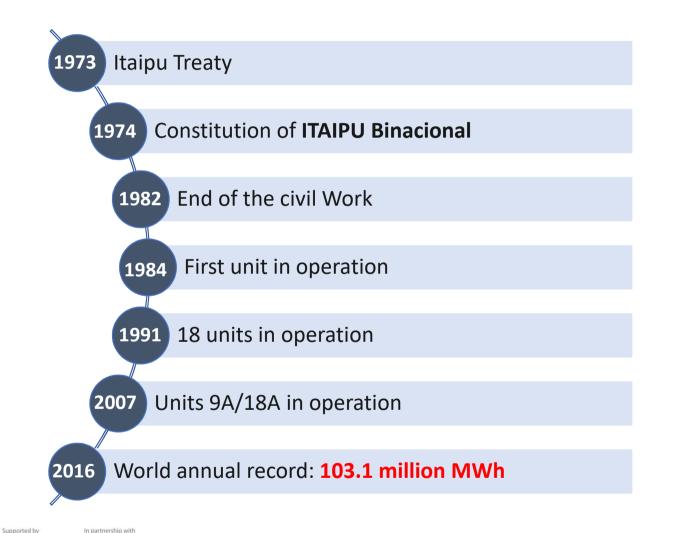
Salto Grande Hydroelectric Complex Argentina • Uruguay

ITAIPU BINACIONAL

Organiser Ssalto grande

ITAIPU BINACIONAL - GENERAL DATA

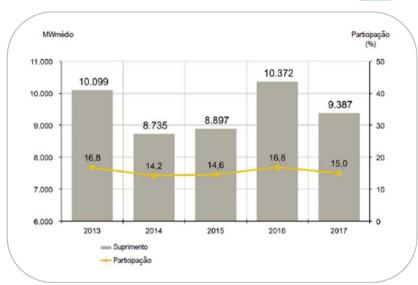
- Localization: Paraná River
- Regulation: Less than monthly (run of river);
- Installed Power: **14.000 MW**;
- Generating Units: **20** (700MW);
 - ✓ 60Hz Sector: 10;
 - ✓ 50Hz Sector: 10;
- Reservoir: **1.350 km²** (7th in Brazil);
- Production index: **10,4 MW / km^{2;}**
- Rated head: **118,40m.**

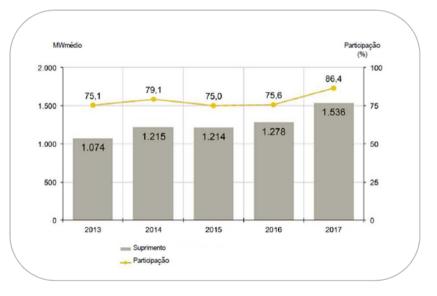

Piha

In nartnership with

CHRONOLOGY – MAIN EVENTS

Organiser Ssalto grande





ENERGY – MARKET SHARE

BRAZILIAN MARKET - ANNUAL (MWmédio) 📀

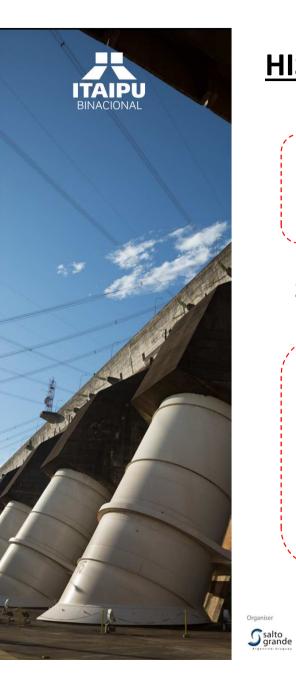
PARAGUAYAN MARKET - ANNUAL (MWmédio)

Organiser Supported by

Øiha

In partnership with

27-28 August 2018


Salto Grande Hydroelectric Complex Argentina • Uruguay

HPP MODERNIZATION PROJECT

HISTORICAL

In partnership with

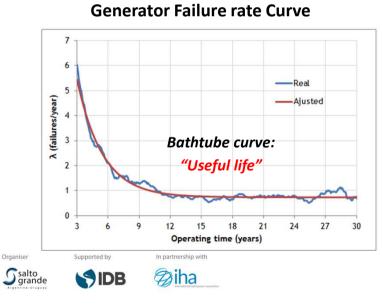
Øiha

Supported by

IDB

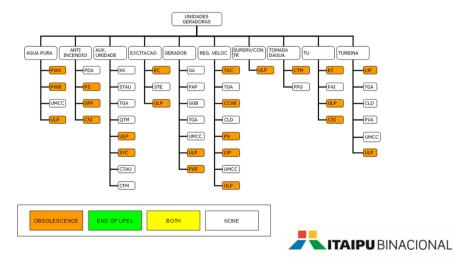
2003 - 2008	 ✓ Initial studies and discussion; ✓ Condition Assesment; ✓ Technological Modernization Plan (PAT). 	PAT 1st cycle
2009 - 2012	Project interruption: strategic convenience	
2013 - 2014	 ✓ Strategic Planning definition (stages); ✓ Technology investigation; ✓ Hydro Market review. 	PAT
2015	Bid & Hiring: Basic Design	2nd cycle
2016 - 2017	Basic Design: Execution and Completion	

MOTIVATION


Obsolescence

✓ lack of: functionality, spare parts, technical expertise

End of Life


✓ Availability index, Low MTBF, High MTTR

Generator Unit


Supervision, Control, Protection and Regulation Systems

SCOPE

Focus on: Supervision, Control, Regulation, Protection and Monitoring

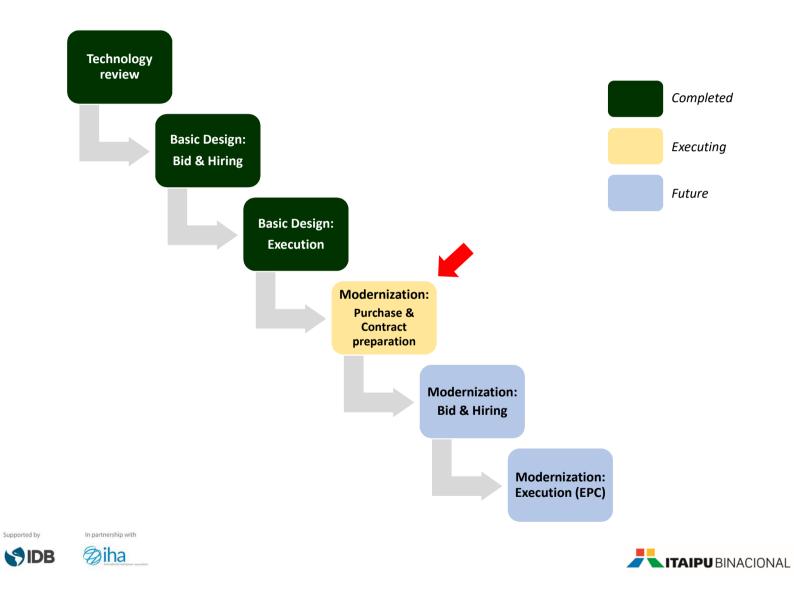
OUT OF SCOPE

Generator

Main Transformers

GIS: High Voltage equipment

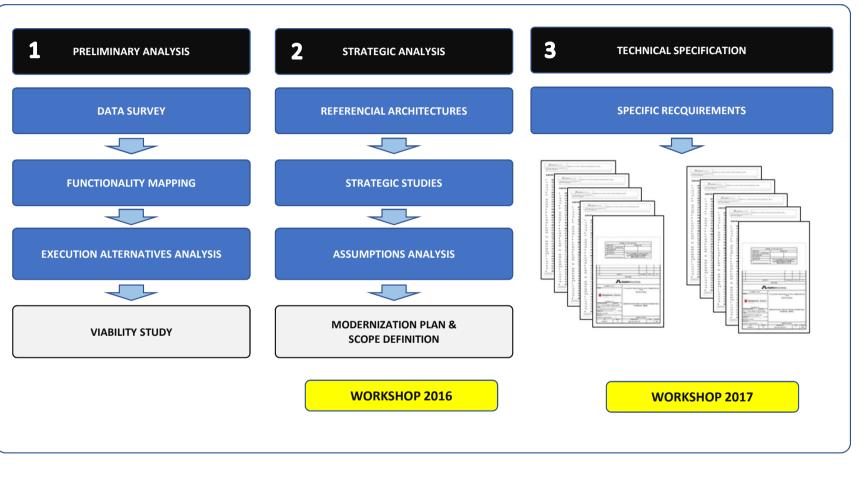
Organiser Ssalto grande


IDB

Ssalto grande

STRATEGIC PLANNING (Stages)

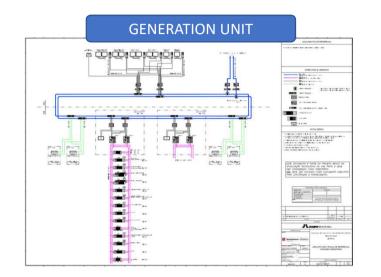
BASIC DESIGN

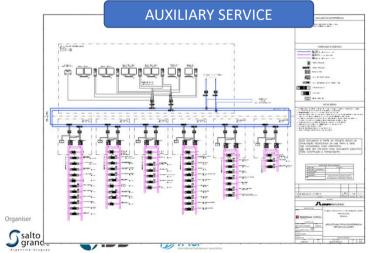

Supported by

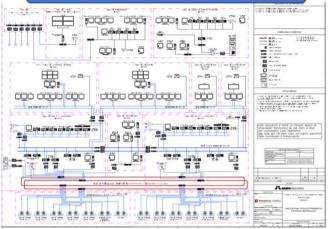
IDB

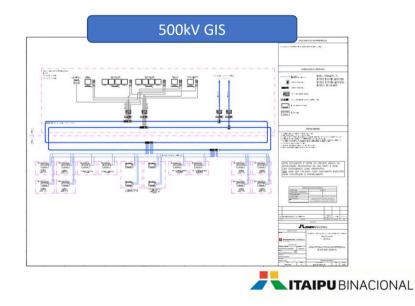
Ssalto grande

In partnership with


Diha






BASIC DESIGN: Referencial Architecures

CENTRALIZED CONTROL

EXECUTION PLANNING

Based on scenarios analysis

- First step: Modernization of the Centralized Control; •
- Generation Unit: Vertical strategy •
- Unit stop Baseline: sequencial / 1 per time
- Mean time per Unit: 6 months (10 years) •

Redução da geração - Devido à AT - Média (1931-2014)

tul Arm Set Més de parada da primeira unidade

B Meda

Número de ris MAG **Beller**

2 13

B MESES

2

4 Estant

3

UNIDADES EM MANUTENÇÃO UNIDADE GERADORA QUE APRESENTOU PROBLEMAS E DEVE SER MODERNIZADA

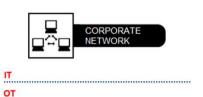
25,000,000 20.000.000

15,000,000 10,000,000

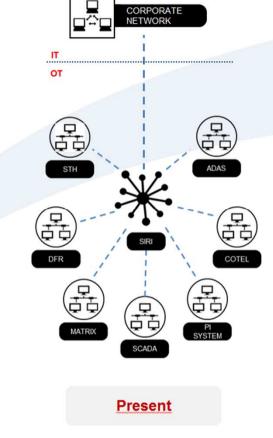
27-28 August 2018

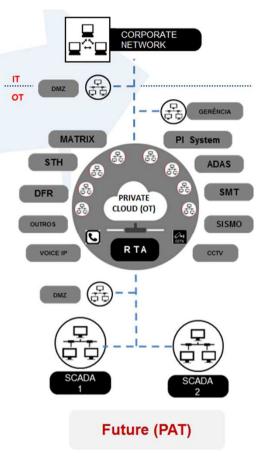
Salto Grande Hydroelectric Complex Argentina • Uruguay

DIGITAL ARCHITECTURE


Organiser Salto grande

EVOLUTION


H


ADAS

H

SCADA

Past

- Supervision & Control: Analog and Digital
- ✓ No Cyber Security Organiser Supported by

Isolated systems

STH

 \checkmark

 \checkmark

In partnership with

DFR

- ✓ Interconected systems
 - Supervision & Control: Analog and Digital
 - ✓ Low Cyber Security components

- ✓ Virtualization (OT Private Cloud)
- ✓ Supervision & Control: Digital
- ✓ Complete Cyber Security strategy

SUPERVISION & CONTROL (PAT)

Centralized Control

- ✓ 2 x SCADA/EMS in a multi-site arranje;
- ✓ EMS applications: AGC, AVC, HSM, ESM, State estimator, etc.
- ✓ Production, Development and Trainning environments;
- ✓ Central Control Room (CCR) and Contigency Room.

Local Control

- ✓ 14 x DCS: Generation Units, SS AA and GIS;
- ✓ Dual main controller with distributed field controllers and I/Os;
- ✓ Main Functions: start / stop sequencies, cooling, intake, speed governor, excitation;
- ✓ Instrumentation based on AS-i;
- ✓ Local Control Room (LCR).

Protection

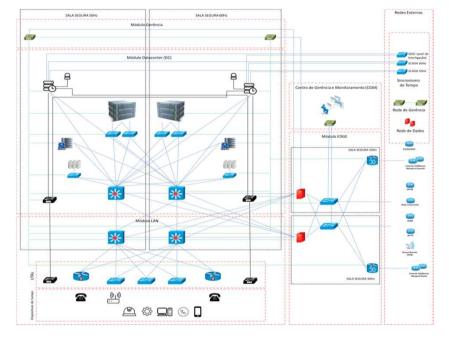
✓ Based on IEC 61850 (IEDs)

n nartnershin with

Piha

OT NETWORK (PAT)

- Network infrastrucuture designed to fullfill **Operational Technology** requirements;
- Based on IT equipment and technologies;
- Services:
 - ✓ Industrial communication;
 - ✓ Video monitoring;
 - ✓ Industrial Datacenter (OT Private Cloud);
 - ✓ Access network (wired / wireless);
 - ✓ Timesync (NTP and PTP);
 - ✓ Centralized Historian (PI System, OSIsoft);
 - ✓ External interface (IT);
 - ✓ Network Monitoring Center (CGM)



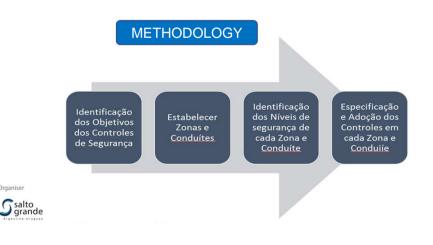
In partnership with

Supported by

IDB

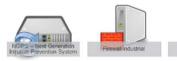
Ssalto grande

CYBER SECURITY (PAT)


- Cyber Security strategy definition: Polices and Regulation;
- Methodology according to ANSI-ISA/99;
- Zone and Security Level definition;
- Security control organized in six domains:
 - ✓ Governance and monitoring;
 - ✓ Bord security;

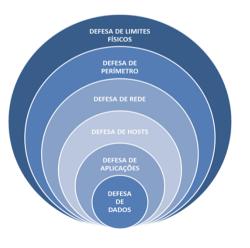
.

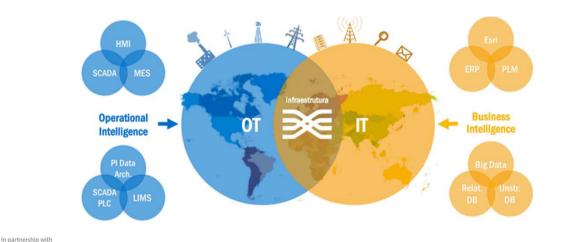
•


.

- ✓ Supervision and Control network protection;
- ✓ Malware control;
- ✓ Data security;
- ✓ Trainning;
- Business continuity (ISO 22301);
- Directions for Test and Acceptance procedures (ISO 15408);

CONTROLS




SOFTWARE & TOOLS (PAT)

Operational Data Strategy

- ✓ Centralized Historian based on PI System (OSIsoft) platform;
- ✓ Data analysis and Operational intelligence tools;
- ✓ Link to Corporate Systems and other BI tools.

Engineering Software

- ✓ Unfied software solution for equipment life-cycle management;
- ✓ Intelligent tools to improve the design and execution.

Supported by

ITAIPU BINACIONAL

27-28 August 2018

Salto Grande Hydroelectric Complex Argentina • Uruguay

FINAL CONSIDERATIONS

Organiser Ssalto grande

FINAL CONSIDERATIONS

HPP Digitalisation Challenges

- 1. A full digital HPP demands multidisciplinary knowledge and teams;
- 2. Cyber threats are real: Create a **Cyber Security Strategy** (People, Process and Technology)
- 3. The digital systems life cycle is short → be prepared to plan and execute <u>continuous upgrades stepwise</u>;
- 4. <u>Operational Data Strategy</u>: collect, store and analise a massive amount of data (Operational Intelligence tools);
- 5. There is **no "on size fits all"** to approach digitalisation.

FINAL CONSIDERATIONS

HPP Digitalisation Benefits

- 1. Keep up to date with technological evolution;
- 2. Broaden Visibility and insights into the HPP performance;
- 3. Reduce unplanned outages and downtime;
- 4. Improve productivity through more intelligent tools (simulation, AR, etc.);
- 5. Optimize O&M costs (Ex.: predictive & condition-based maintenance);
- 6. Extend the operational lifetime of the assets;
- 7. Improve HPP efficiency and reliability;

Thank you!

27-28 August 2018

Salto Grande Hydroelectric Complex Argentina • Uruguay

Bruno Marins Fontes

brunomf@itaipu.gov.br

Manager

Electronic and Control Systems Engineering Division (ENES.DT) Engineering Superintendence (EN.DT)

Jorge Andres Silva Stransky

jasilva@itaipu.gov.py

Senior Engineer Eletromechanical Engineering Division (ENEE.DT) Engineering Superintendence (EN.DT)

Organiser Salto grande

